
1. Introduction
The National Centers for Environmental Prediction (NCEP) is currently developing the Rapid Refresh Forecast 
System (RRFS; Carley et al., 2021) as part of an effort to unify the NCEP operational forecast modeling systems 
using the finite volume cubed sphere (FV3; Putman & Lin, 2007) dynamical core. The RRFS is planned to run 

Abstract This study evaluates simulated radiance forecasts from a series of controlled experiments 
consisting of FV3-LAM forecasts with different configurations of model physics and vertical resolution. The 
forecasts were produced during the 2020 Hazardous Weather Testbed Spring Forecasting Experiments on the 
same forecast cases. The evaluation includes grid-point, neighborhood-based and object-based verification. 
The experiments include forecasts that were identical except for the physics (EMC-LAM vs. EMC-LAMx), 
vertical resolution (EMC-LAMx vs. NSSL-LAM), or combined initial conditions, physics and vertical 
resolution (GSL-LAM). It is found that the EMC-LAM generally provided better simulated radiance forecasts 
than the other three configurations at most forecast lead times, due to its unique physics configuration. All 
configurations generally over-forecasted high level clouds. EMC-LAM reduced the over-forecasting of 
high clouds, but also under-forecasted the coverage of mid-level clouds. In contrast, at early lead times the 
EMC-LAM had relatively poor performance relative to the other forecasts. Furthermore, EMC-LAM was an 
outlier in terms of the vertical structure of clouds. It is also found that the NSSL-LAM consistently improved 
upon the EMC-LAMx, which had fewer vertical levels than NSSL-LAM. Compared to EMC-LAMx, NSSL-
LAM had less cloud over-forecasting bias, especially with small cloud objects, and less overall error. The 
differences between EMC-LAMx and GSL-LAM were generally much smaller than the differences between 
EMC-LAMx and EMC-LAM/NSSL-LAM. Finally, it is found that a non-linear bias correction conditioned 
on symmetric brightness temperature reduced the overall root-mean-square error by about a factor of 2 while 
improving the unrealistic vertical structure of clouds in the EMC-LAM.

Plain Language Summary While forecasts from different convection-allowing model (CAM) 
configurations are often evaluated in terms of simulated reflectivity or precipitation, many users are also 
interested in simulated brightness temperature and associated cloud features. This study evaluates the 
forecast performance of several configurations of the FV3-LAM CAM in terms of simulated infrared 
brightness temperature. The different configurations highlight the impacts of vertical resolution and physical 
parameterizations, in particular. It is found that the older physics parameterization, with Geophysical Fluid 
Dynamics Laboratory microphysics and Eddy-Diffusivity Mass-Flux boundary layer, performed generally 
better than a newer configuration, with Thompson microphysics and Mellor-Yamada-Nakanishi-Niino boundary 
layer, that had previously been found to improve precipitation and simulated reflectivity forecasts. The 
difference is related to both the presence of an additional cumulus parameterization in the older physics, as 
well as the tendency of the newer Thompson microphysics scheme to produce large regions of high cloud near 
deep convection. However, at early lead times the older physics configuration took longer to spin up ongoing 
convection. It is also found that enhanced vertical resolution consistently improved the forecasts. A caveat to 
these conclusions is that the FV3-LAM and its physics configuration are undergoing continuous development 
which may change these results in the newest model versions.
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at a convection-allowing grid spacing of 3 km using the FV3 limited area model (LAM; Black et al., 2021). The 
RRFS will replace current NCEP operational convection-allowing model (CAM) systems that are based on the 
Weather Research and Forecasting (WRF; Skamarock et al., 2008) and Nonhydrostatic Multiscale Model on the 
B-grid (Janjić & Gall, 2012; Janjić et al., 2001) dynamic cores which have been extensively evaluated, developed 
and tuned as a CAM over the years (e.g., Aligo et al., 2018; Clark et al., 2015; Grasso et al., 2014; Johnson & 
Wang, 2017, 2019; Johnson, Wang, Xue, & Kong, 2011; Kain et al., 2008; Weisman et al., 2008).

Several studies have begun to evaluate different configurations of the FV3-LAM as a CAM in order to facilitate 
continued development of the FV3-LAM model and physics parameterizations. For example, Gallo et al. (2021) 
applied neighborhood and object-based methods to evaluate FV3-based CAM forecasts of updraft helicity and 
reflectivity. They found that the FV3-based CAM forecasts with several configurations were generally less skill-
ful than a WRF-based high resolution rapid refresh (HRRR; Dowell et  al.,  2022; James et  al.,  2022) model. 
Potvin et al.  (2019) also found two FV3 configurations to underperform a variety of WRF configurations for 
severe storm surrogate forecasts, although FV3 did have some advantages over WRF in terms of storm struc-
ture. However, Zhou et al. (2019) found an improved precipitation diurnal cycle in FV3-based CAM forecasts, 
compared to FV3 forecasts at 13 km resolution, while Snook et al. (2019) found improved quantitative precipi-
tation forecasts in an FV3-based CAM configuration, compared to several configurations of WRF-based CAM 
forecasts. The FV3 and WRF forecasts in these studies generally used different physics and initial conditions in 
addition to the different dynamical cores.

An aspect of the forecasts with FV3-based CAM, and its associated physical parameterizations, that has received 
relatively little attention in the literature is the forecast of simulated satellite radiance. Evaluation of simulated 
all-sky radiance can provide information on how well the model simulates cloud processes beyond precipitating 
deep convection. The performance of forecast cloud processes is important to understand because clouds affect 
the radiation budget (e.g., surface heating) as well as latent heating of condensation during cloud formation, both 
of which can impact forecasts on time scales of a day or less. Furthermore, studies have shown the potential to 
improve CAM forecasts through assimilation of the high time and space resolution radiances from the Advanced 
Baseline Imager (ABI; Schmit et al., 2017) onboard the geostationary GOES-16 and GOES-17 satellites (e.g., 
Johnson et al., 2022; Jones et al., 2020; Zhang et al., 2021). The fidelity of model-simulated and observed all-sky 
ABI radiances should be considered for optimal assimilation of such radiances and should therefore also be 
evaluated.

An evaluation of simulated all-sky radiances from different WRF configurations found that the microphys-
ics parameterization scheme had more pronounced impacts on the simulated radiance forecasts than plane-
tary boundary layer (PBL) parameterization (Cintineo et al., 2014), especially for upper-level clouds (Otkin & 
Greenwald, 2008). In addition to grid-point and neighborhood-based diagnostics, object-based evaluation has 
also proven effective for quantifying physical differences between model-simulated and observed cloud features 
(Griffin et al., 2017; Rempel et al., 2017). Similar evaluations of the interactions between simulated cloud char-
acteristics and physics configuration have not been performed for FV3-based CAM forecasts. Since FV3 has a 
fundamentally different dynamical core and nonhydrostatic solver (Harris et al., 2020), and different available 
physics options than WRF, the first goal of the present study is to evaluate the simulated ABI all-sky radiances in 
a series of FV3-based CAM forecasts with different physics configurations using both grid-point and object-based 
diagnostics. In particular, we aim to better understand how well current FV3 physics schemes forecast simulated 
radiance, and to better understand the relative impact of the FV3 physics configuration on simulated radiance 
forecasts relative to other aspects of the model configuration such as initial condition (IC) source.

The model vertical resolution may also influence the simulated radiance forecasts. This aspect of the model 
configuration in CAM forecasts has received less attention in the literature than the physics configuration and IC. 
However, the vertical resolution may be an important consideration in the context of simulated radiance evalua-
tion and data assimilation because the vertical gradients present at cloud top where the observed radiance weight-
ing function peaks may not be fully resolved at typical vertical resolutions on the order of 500 m in the middle and 
upper troposphere (e.g., Johnson & Wang, 2019). Furthermore, the vertical resolution may influence  the evolu-
tion of deep convection systems that often dominate the cloudy radiances in the warm season through interactions 
with the microphysics scheme (e.g., Aligo et al., 2009). Therefore, we also evaluate the forecasts with different 
vertical resolutions with a goal of better understanding the impacts of vertical resolution on the FV3-simulated 
ABI radiances, particularly in cloudy regions.
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The present study aims to guide future improvements to operational 
FV3-LAM configurations by providing a better understanding of the error 
characteristics of FV3-LAM simulated ABI radiances, and their sensitivity to 
model configuration. Such understanding can also guide ABI radiance data 
assimilation efforts, including the application of appropriate bias-correction 
techniques. Therefore, the simulated ABI radiances in the present study 
are also evaluated after applying a non-linear bias correction following 
Chandramouli et al. (2022).

In summary, this study evaluates a series of FV3-LAM forecasts with differ-
ent physics and vertical resolutions in terms of simulated ABI radiance. The 
goal of the evaluation is to (a) quantify the performance of the simulated ABI 
radiance forecasts using grid-point, neighborhood-based and object-based 

diagnostics, (b) determine the sensitivity of simulated radiance forecasts to the above aspects of the model config-
uration, and (c) explore non-linear bias correction of the FV3-LAM simulated radiances and its impact on the 
forecast performance. The remainder of this paper is organized as follows. Section 2 describes the methods used 
in this study, including the experiment design and verification metrics. Results are presented in Section 3 and a 
summary and conclusions are provided in Section 4.

2. Methods
This study leverages forecasts run during the 2020 Hazardous Weather Testbed (HWT) Spring Forecasting 
Experiments by the National Oceanographic and Atmospheric Administration (NOAA) National Severe Storms 
Laboratory (NSSL), NOAA Environmental Modeling Center (EMC), and NOAA Global Systems Laboratory 
(GSL). A total of 14 forecasts, initialized at 0000 UTC, were available on the same cases for direct comparison 
of the impact of the different FV3-LAM configurations used for each forecast (Table 1).

2.1. Experiment Design

The FV3-LAM configurations are listed in Table  2. All forecasts used 3-km grid spacing and rapid radia-
tive transfer model (Clough et  al.,  2005) radiation parameterization scheme. Forecasts labeled NSSL-LAM, 
EMC-LAM, and EMC-LAMx all were initialized from the NCEP Global Forecast System (GFS) analysis and 
used the corresponding GFS forecast as lateral boundary conditions (LBC). NSSL-LAM and EMC-LAMx both 
used the Thompson et  al.  (2008) microphysics scheme, Mellor-Yamada-Nakanishi-Niino (MYNN; Nakanishi 
& Niino, 2009) PBL scheme, and Noah (Barlage et al., 2010) land surface model. The only difference between 
NSSL-LAM and EMC-LAMx was the number of vertical levels (Table 2), providing a controlled experiment 
on the impact of the finer vertical resolution in NSSL-LAM. The only differences between EMC-LAMx and 
EMC-LAM are that EMC-LAM uses the Geophysical Fluid Dynamics Laboratory (GFDL; Chen & Lin, 2013; 
Zhou et  al., 2019) microphysics scheme, and Eddy-Diffusivity Mass-Flux (J. Han et  al., 2016) PBL scheme. 
This difference provides a controlled experiment for the impact of the more recent physics package used in 
EMC-LAMx. In addition to the GFDL microphysics scheme, the EMC-LAM configuration also includes deep 
cumulus parameterization using the Simplified Arakawa-Schubert (J. Han & Pan, 2011) scheme. However, only 
about 6.5% of the total precipitation on these cases was produced by the cumulus parameterization; most of the 

Table 1 
List of Forecast Cases Used in This Study

1 May 2020 11 May 2020

3 May 2020 14 May 2020

4 May 2020 16 May 2020

5 May 2020 26 May 2020

6 May 2020 27 May 2020

8 May 2020 28 May 2020

9 May 2020 29 May 2020

Table 2 
Summary of FV3-LAM Configurations, Including the Name of the Configuration Used in This Study

IC LBC MP CU PBL LSM NZ

NSSL-LAM GFS GFSf Thompson None MYNN Noah 82

EMC-LAM GFS GFSf GFDL SAS EDMF Noah 60

EMC-LAMx GFS GFSf Thompson None MYNN Noah 60

GSL-LAM HRRRv4 RAPf Thompson None MYNN RUC 64

Note. Source of Initial (IC) and Lateral Boundary Conditions (LBC), Microphysics Parameterization Scheme (MP), Cumulus 
Parameterization (CU), Planetary Boundary Layer Parameterization (PBL), Land Surface Model (LSM), and Number of 
Vertical Levels (NZ). Other acronyms in the table are defined in Section 2.1.
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deep convection was produced explicitly by the model. The forecast labe-
led GSL-LAM was initialized with analyses from version 4 of the HRRR 
and used the forecast from the Rapid Refresh model as LBC. GSL-LAM 
used similar physics and vertical resolution as EMC-LAMx, except that the 
Rapid  Update Cycle (Smirnova et  al.,  2016) land surface model was used 
instead of Noah and there were 64 vertical levels matching the old GFS spec-
tral model configuration instead of 60 matching the NAM model configu-
ration (Figure  1). The differences between GSL-LAM and EMC-LAMx 
can  thus originate from the initial and LBC, the differences in vertical levels, 
and/or the different land surface model. Rather than controlling for a single 
major difference in FV3 configuration, the inclusion of GSL-LAM allows 
for quantification of the impacts of several configuration changes that are 
less directly linked to the expected performance of the simulated radiance 
forecasts.

Forecast simulated radiances were calculated hourly using the Community 
Radiative Transfer Model (Y. Han et al., 2006) version 2.3.0 (CRTM, 2019). 
For the EMC and NSSL forecasts, this was done within the Unified 
Post-Processor (Wolff et al., 2016) version 4.1.0 (UPP, 2019, https://dtcenter.
org/sites/default/files/community-code/upp-users-guide-v4.1.pdf, accessed 
25 January 2023). For the GSL forecasts, this was done within the Gridpoint 
Statistical Interpolation (Shao et al., 2016) version 3.7 (GSI, 2020).

2.2. Verification Metrics

The corresponding hourly ABI radiance observations are obtained from the National Centers for Environmen-
tal Information (GOES-R, 2020) data repository at https://www.ncdc.noaa.gov/airs-web/search. This evaluation 
focuses on the water-vapor sensitive channels 8 (6.2 micron), 9 (6.9 micron) and 10 (7.3 micron), which have 
clear-air maximum weighting functions at about 325, 400, and 625 hPa, respectively. Grid-point based diag-
nostics such as root-mean-square error (RMSE) and bias were calculated after interpolating the ABI radiance 
observations from their native ∼2 km grid to the model grid using bi-linear interpolation. Neighborhood-based 
and object-based diagnostics are also calculated after first interpolating the observed radiances to the model grid.

Grid-point based verification can be influenced by a “double-penalty” effect (e.g., Baldwin et al., 2001; Johnson, 
Wang, Kong, & Xue, 2011) in the presence of high amplitude features such as clouds because small spatial errors 
can result in improvements to the objective verification metric by simply forecasting less clouds overall (i.e., low 
bias). The Fractions Skill Score (FSS; Gasperoni et al., 2020; Roberts & Lean, 2008; Schwartz et al., 2010) can 
mitigate the double-penalty effect while also providing verification metrics at different brightness temperature 
thresholds. The FSS is a skill score calculated as FSS = 1−FS/FSref, where FS is the Fractions Score and FSref 
is a reference Fractions Score. The Fractions Score is the root-mean-square difference between the fraction of 
neighboring gridpoints forecast to exceed some threshold and the fraction of neighboring grid points observed to 
exceed the same threshold, calculated for each grid point in turn. Here, a circular neighborhood is used defined 
by a neighborhood radius. The FSref is the FS that would result if there was zero overlap between the forecast and 
observed features and is calculated as the sum of mean-squared forecast and observed neighborhood fractions. 
An advantage of the FSS is that it can evaluate the forecast skill with respect to different intensity (threshold) and 
spatial scale (radius) of features. FSS is herein calculated at intensity thresholds of 210, 220, and 230 K and an 
18 km radius. The 18 km radius is chosen to remove the effects of spatial displacements that are below the model 
effective resolution of approximately 7 times the model grid spacing (Skamarock, 2004). FSS with larger radii 
showed similar relative performance of the forecasts as the 18 km radius (not shown), suggesting that mesoscale 
displacement of otherwise well-forecast features was not the primary cause of differences in forecast skill. The 
intensity thresholds are chosen to be sensitive to the coldest cloud tops in convective cores, high clouds generally 
associated with deep convection, and more general clouds that may have tops at the lower altitude 230 K level. 
An example of channel 10 forecast differences for the 14 May 2020 case at 24-hr lead time is shown in Figure 2.

Object-based diagnostics are obtained using the Development Testbed Center Method for Object-based Diag-
nostic Evaluation component of the METplus (Brown et  al.,  2021) software (Davis et  al.,  2006,  2009). The 
object-based evaluation consists of identification of objects in forecast and observed fields, as well as matching 

Figure 1. Differences among models in terms of the distribution of layer 
thickness between each vertical level. In this figure, GSL refers to the 
GSL-LAM, EMC refers to both the EMC-LAM and EMC-LAMx, and NSSL 
refers to the NSSL-LAM.

https://dtcenter.org/sites/default/files/community-code/upp-users-guide-v4.1.pdf
https://dtcenter.org/sites/default/files/community-code/upp-users-guide-v4.1.pdf
https://www.ncdc.noaa.gov/airs-web/search
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of forecast and observed objects. An advantage of the object-based framework is that it allows for an objective 
verification against observations in terms of object attributes such as size, shape and location rather than simple 
spatial overlap that grid-point and neighborhood-based frameworks are suited to evaluate. In the present study, 
cloud objects are identified using a threshold of 230 K applied to the channel 10 observed and simulated radi-
ances, after applying a smoother that consists of averaging each grid point within a 20 km radius. The 230 K 
threshold is selected to include both deep convective and lower-altitude cloud systems (e.g., Figure 2). While the 
220 K threshold objects (not shown) yields many similar conclusions as with the 230 K threshold, reducing the 
threshold results in noisier statistics due to the already-reduced sample size when moving from the grid-point 
space to the object space, and are therefore  not included.

Figure 2. Example of ABI Channel 10 (a) NSSL-LAM simulated radiance, (b) GSL-LAM simulated radiance, (c) EMC-LAMx simulated radiance, (d) EMC-LAM 
simulated radiance, and (e) observed radiance, valid at 0000 UTC 15 May with forecasts at the 24-hr lead time. Contours (black) are overlaid at the 210, 220, and 230 K 
brightness temperature thresholds.
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The Object-based Threat Score (OTS) is calculated as the ratio of the area 
of forecast and observed matched object pairs, weighted by the similarity of 
the matched objects, normalized by the total area of all forecast and observed 
objects (Johnson, Wang, Xue, & Kong,  2011). The similarity of matched 
objects is calculated using Total Interest, which is a weighted average of the 
interest, or similarity, of different attributes of the paired objects. Here, the 
attributes of centroid distance, area ratio and aspect ratio difference are used. 
In the weighted average, a weight of 1.0 is used for centroid distance while 
the weight for area ratio and aspect ratio difference is equal to the centroid 
distance interest value. Thus, objects that are spatially distant have less 
contribution from size and shape similarities than nearby objects which are 
more likely to represent the same cloud system. The interest of the individual 
attributes is calculated as shown in Figure 3. Importantly, several different 
functions for the individual attribute interests and several different combina-
tions of weights were also tried and the relative performance of the different 
forecasts was in general not sensitive to the details of the matching function.

Statistical significance of differences between the forecast performance 
metrics (RMSE, bias, FSS and OTS) is tested using a permutation resa-
mpling method following Hamill  (1999). In short, a distribution of 1,000 
differences between a metric (e.g., RMSE) is obtained by randomly consid-
ering one of the forecasts being compared as “forecast 1” and the other as 
“forecast 2” separately on each forecast case. The distribution of differences 
in the metric for the randomly assigned forecasts is then used to determine 
the probability that the true difference between the two forecasts is smaller 
than the difference that can occur by random chance (i.e., a p-value). The 
p-value is thus the percentage of randomly assigned difference magnitudes 
that exceed the magnitude of the actual difference between the two forecasts 
being compared. Statistical significance at the 95% confidence level (i.e., 
p-value < 0.05) is indicated on the corresponding figures with a black dot 
for the difference between NSSL-LAM and EMC-LAMX, a blue dot for the 
difference between EMC-LAM and EMC-LAMx, and an orange dot for the 
difference between GSL-LAM and EMC-LAMx.

3. Results
3.1. Impacts of Physics Configuration and Vertical Levels

The overall bias and RMSE of the simulated ABI radiance forecasts are shown in Figure 4. The biases (i.e., aver-
age difference between simulated and observed radiance) are generally on the order of 1–2 K, while the RMSE 
ranges from ∼5 K for channel 8–∼10 K for channel 10. The relative biases among the forecasts are similar across 
all three channels, with EMC-LAM being the warmest and EMC-LAMx being the coldest. The least biased fore-
cast (i.e., closest to zero bias) depends on the channel and forecast lead time within the diurnal cycle. At early lead 
times, EMC-LAMx is generally least biased and EMC-LAM is generally most biased. At the 1-day lead time, 
during the diurnal maximum of convection, EMC-LAM is least biased for channel 9 while NSSL-LAM is gener-
ally least biased for channels 8 and 10. EMC-LAM consistently has the smallest RMSE while EMC-LAMx and 
GSL-LAM consistently have the largest RMSE. The larger differences in bias and RMSE between EMC-LAM 
and the other three forecasts than the differences in bias and RMSE among the other three forecasts suggest that 
the physics configuration has a larger impact on the grid-point based verification of the ABI water vapor sensi-
tive radiances than the vertical resolution and source of IC. However, it is also notable that there are consistent 
differences between NSSL-LAM and EMC-LAMx which suggests that the vertical resolution does also have 
an impact on both the bias and RMSE of the simulated radiance forecasts. It is also noted that the difference in 
RMSE between EMC-LAMx and GSL-LAM are much smaller than the differences between EMC-LAMx and 
NSSL-LAM or EMC-LAM. This suggests that the impact on simulated radiance forecast performance of chang-
ing vertical resolution or the microphysics and PBL scheme were greater than the impact of changing the source 

Figure 3. Interest functions used for calculating similarity of matched objects, 
for attributes of (a) centroid distance, (b) area ratio, and (c) aspect ratio 
difference.



Earth and Space Science

JOHNSON ET AL.

10.1029/2022EA002651

7 of 15

of IC, land surface model, and the distribution of a similar number of vertical levels. The differences in bias are 
statistically significant at the 95% level for almost all lead times. The RMSE differences between EMC-LAM and 
EMC-LAMx are all statistically significant except at the 1-hr lead time. The differences between NSSL-LAM and 
EMC-LAMx are significant at most lead times. The differences between GSL-LAM and EMC-LAMx are most 
consistently significant during the first 6 forecast hours which suggests the most consistent differences are largely 
due to the different initial conditions (Figure 4).

The overall warmer brightness temperatures for EMC-LAM than the other forecasts seen in Figures 4a, 4c, and 4e 
suggest that the EMC-LAM may be forecasting fewer overall clouds with cold brightness temperature than the 
other forecasts. This interpretation is confirmed by using the channel 10 minus channel 8 brightness temperature 
difference as an approximate classification of pixels with deep clouds (small difference between channel 8 and 
10), mid-level clouds (moderate difference between channel 8 and 10) and clear air or very low-level clouds 
(large difference between channel 8 and 10), following the classification used by Cintineo et al. (2014). All of the 
FV3-LAM configurations over-forecast the coverage of deep clouds compared to observations at most lead times 
(Figure 5a). This over-forecasting is generally least pronounced for EMC-LAM, which is likely related to both 
the presence of cumulus parameterization in EMC-LAM which can mitigate the over-forecasting of deep convec-
tion, as well as the more expansive anvils clouds often associated with organized convection using Thompson 
microphysics than other microphysics schemes (e.g., Feng et al., 2018; Wheatley et al., 2014). NSSL-LAM also 
has less over-forecasting of high clouds than EMC-LAMx at lead times of ∼4–24 hr, showing that the increased 

Figure 4. Grid-point verification over all 14 cases for (a, c, e) bias and (b, d, f) RMSE of (a), (b) channel 8, (c), (d) channel 9 and (e), (f) channel 10 simulated radiance 
forecasts. Markers along the horizontal axis indicate statistically significant difference at the 95% confidence level for (black) NSSL-LAM versus EMC-LAMx, (blue) 
EMC-LAM versus EMC-LAMx, and (orange) GSL-LAM versus EMC-LAMx.
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number of vertical levels also helps mitigate the over-forecasting of high clouds that are often associated with 
deep convection.

For the mid-level clouds (Figure 5b), all FV3-LAM configurations show a late timing bias in the diurnal maxi-
mum compared to observations. While EMC-LAM under-forecasted the coverage of mid-level clouds, the other 
three configurations over-forecasted the coverage of mid-level clouds. The impact of vertical resolution (NSSL-
LAM vs. EMC-LAMx) on reducing the over-forecasting of mid-level clouds is most pronounced during and 
after the diurnal convective maximum. The EMC-LAM slightly over-forecasts the coverage of clear-sky pixels 
(Figure 5c), while the other three configurations under-forecast the coverage of clear-sky pixels, consistent with 
the trends seen in Figures 5a and 5b. The coverage of deep clouds for EMC-LAMx and GSL-LAM are very 
similar (Figure 5a), consistent with the similar RMSE for these forecasts in Figure 4. However, the differences in 
clear air (Figure 5c) and mid-level (Figure 5b) clouds between EMC-LAMx and GSL-LAM is generally similar 
in magnitude to the differences between EMC-LAMx and NSSL-LAM.

Figure 5. Fraction of domain with channel 8–channel 10 brightness temperature difference (a) less than 2 K, (b) between 2 
and 10 K, and (c) greater than 10 K, calculated over all 14 cases.
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The FSS for channel 10 radiance verification at three brightness temper-
ature thresholds and an 18 km neighborhood radius is shown in Figure 6. 
Other neighborhood radii show very similar relative performance among 
the forecasts (not shown). The FSS for the coldest cloud tops below 210 K 
(Figure 6a) is generally higher for EMC-LAM than the other three configu-
rations, except for the first forecast hour and some of the lead times during 
the minimum in the diurnal cycle of deep convection around forecast hours 
12–17 and 32–36. This advantage of EMC-LAM at many lead times is 
also seen at the 220  K threshold (Figure  6b). However, for the warmer 
threshold of 230 K (Figure 6c), which also includes mid-level clouds, the 
performance among the different configurations is more similar than at the 
colder thresholds, except for the EMC-LAM under-performance at very 
early, and very late, forecast lead times. There is a small advantage of 
the increased vertical levels in NSSL-LAM, compared to EMC-LAMx, 
at several lead times and thresholds (Figure 6). However, the difference is 
less pronounced than in the grid-point based verification and is compara-
ble in magnitude to the differences between EMC-LAMx and GSL-LAM. 
While many of these differences are statistically significant at the 95% 
level, especially at the 220 K threshold, there are many times for which 
high levels of statistical significance of FSS differences are not obtained in 
the 14-case experiment.

While the above grid-point and neighborhood-based diagnostics can 
quantify the relative performance of different FV3-LAM configurations, 
object-based verification can provide an additional perspective by relating 
the performance differences to specific cloud object attributes. Figure  7 
shows average size, total number, and size distribution of cloud objects 
using a 230  K threshold on the channel 10 radiance to identify cloud 
objects. All configurations have an average cloud object size that is too 
small, especially EMC-LAM (Figure  7b). However, the total number of 
cloud objects is most consistent with observations for EMC-LAM, while 
the other configurations over-forecast the number of cloud objects at most 
lead times (Figure  7a). The under-forecasting of clouds in EMC-LAM 
inferred from Figure  5 occurs for both small cloud objects (Figure  7c) 
and large cloud objects (Figure 7d). The other three configurations gener-
ally over-forecast the number of both small (<2,000 km 2) and very large 
(>20,000 km 2) cloud objects. These trends in over- and under-forecasting 
of clouds are most consistent with the mid-level clouds (Figure 5b) rather 
than the high-level clouds (Figure 5a).

The object-based framework also provides an additional perspective on the skill of the forecasts of simulated 
cloud features. EMC-LAM has the best forecasts of simulated clouds at about the 10–32 hr forecast lead times in 
the object-based framework (Figure 8). However, the EMC-LAM forecast is relatively poor compared to NSSL-
LAM, and similar to EMC-LAMx at early lead times, consistent with the reduced performance of EMC-LAM 
at ∼1–3  hr lead times seen in Figure  6. The greater number of vertical levels in NSSL-LAM compared to 
EMC-LAMx generally results in better simulated cloud forecasts, especially at early lead times and during the 
diurnal convection maximum (Figure 8). Most of the statistically significant differences in OTS occur during 
the diurnal convective maximum of ∼23–31 hr lead times. The lack of high statistical significance at many lead 
times is due to only having 14 cases of controlled experiments, and the enhanced variability resulting from 
having fewer objects in each forecast than the number of grid points used for calculated other metrics such as 
RMSE. However, consistency of differences such as EMC-LAM versus EMC-LAMx across multiple lead times 
and verification metrics provides confidence in the results that is not necessarily reflected in the statistical 
significance tests.

Figure 6. Fractions Skill Score of ABI channel 10 simulated radiance over 
all 14 cases as a function of forecast lead time with a radius of 18 km and 
radiance thresholds below (a) 210 K, (b) 220 K, and (c) 230 K. Statistical 
significance is indicated as in Figure 4.
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3.2. Impacts of Bias Correction

Similar to Chandramouli et al. (2022), the bias is calculated using a binning approach as a function of symmet-
ric brightness temperature, which is the average of the forecast and observed brightness temperature. The esti-

mated bias is therefore non-linear in that the bias is neither constant nor a 
linear function of the brightness temperature. The bias is plotted as a func-
tion of symmetric brightness temperature rather than only forecast or only 
observed brightness temperature because bias correction as a function of 
only observed or only forecast brightness temperature yields subjectively 
unrealistic bias-corrected brightness temperature (not shown) as a result of 
the biases in cloud cover discussed in Section 3.1. The bias of brightness 
temperature is generally consistent across forecast lead times and is shown 
in Figure 9 for the representative example of the 24-hr lead time. The fore-
casts with Thompson microphysics and MYNN PBL scheme (NSSL-LAM, 
EMC-LAMx, and GSL-LAM) have a more pronounced negative bias, largely 
due to over-forecasting high-level clouds, than EMC-LAM at symmetric 
brightness temperatures between about 210 and 230 K (Figure 9). Compared 
to EMC-LAMx with fewer vertical levels, NSSL-LAM has less bias at 
∼230  K but more bias at ∼220  K. For mid-level clouds with brightness 
temperature ∼230–240 K, EMC-LAM has a positive bias consistent with too 
few forecast clouds, while the other configurations have a negative bias. The 
bias distributions for EMC-LAMx and GSL-LAM are again more similar to 

Figure 7. Object size attributes, including (a) average number of cloud objects per day as a function of forecast lead time, (b) average cloud object size as a function of 
forecast lead time, (c) average number of objects in size bins up to 2,000 km 2 at all forecast lead times, and (d) average number of objects in size bins above 2,000 km 2 
at all forecast lead times.

Figure 8. Object-based Threat Score as a function of forecast lead time. 
Statistical significance is indicated as in Figure 4.
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each other than to the other forecasts (Figure 9). Overall, the FV3 configu-
ration is confirmed to affect the non-linear bias characteristics of simulated 
radiance besides just the overall bias and skill discussed above.

The RMSE of the simulated radiance forecasts after removing the non-linear 
biases shown in Figure 9 is shown in Figure 10. After removing the predict-
able part of the error (i.e., bias), the RMSE in general is reduced from about 
5 to 10 K (Figure 4) to about 2–2.5 K (Figure 10). After bias correction, 
EMC-LAM has the lowest RMSE among the considered forecasts for all 
three channels, although the difference is reduced compared to Figure 4. The 
increased vertical levels of NSSL-LAM, compared to EMC-LAMx, slightly 
reduces the RMSE during the mid-day and afternoon hours of ∼12–24 hr 
forecast lead times. The differences in RMSE among NSSL-LAM, 
EMC-LAMx, and GSL-LAM after bias correction are ∼0.1  K or smaller 
(Figure 10). However, the statistical significance of the differences is similar 
to the differences in RMSE without bias correction from Figure 4.

From a data assimilation perspective, the agreement between the vertical 
structure of observed and simulated clouds is an important consideration. 
This is because assimilated brightness temperature observations would be 

expected to better maintain their influence into the forecast period when there is consistency between the cloud 
structures that the model can support and those that are observed. Therefore, the channel 10-8 brightness temper-
ature difference, which is sensitive to cloud vertical structure (Cintineo et al., 2014), is also considered before and 
after bias correction (Figure 11). Before bias correction, NSSL-LAM, EMC-LAMx, and GSL-LAM have similar 
distributions of the channel 10-8 difference, while EMC-LAM has generally too small channel 10-8 difference 
except in clear air (Figure 11). The smaller channel differences for EMC-LAM likely indicate clouds that tend to 
be too deep compared to observations, while the negative channel differences may indicate too many overshoot-
ing tops in thunderstorms that extend into the warmer stratosphere (Cintineo et al., 2014). The EMC-LAM errors 
in cloud vertical structure are generally improved with bias correction (Figure 11b). However, all configurations 
have slightly too large channel differences in deep clouds after bias correction (Figure 11b).

4. Summary and Conclusions
The FV3-based RRFS is planned to replace the WRF-based HRRR as the operational convection-allowing fore-
cast system at NCEP. Evaluations so far of different FV3 configurations for this purpose have largely focused on 
the precipitating cores of intense convection in terms of reflectivity, updraft helicity and surrogate severe hazards. 
Non-precipitating cloud regions are also of interest because of their radiative impacts on convective environments 
and their relationship to the latent heating and microphysical structure of cloud systems. Furthermore, effective 
assimilation of the high-resolution all-sky infrared radiances provided by the ABI instrument onboard the geosta-
tionary GOES-16 and GOES-18 satellites requires an understanding of the forecast error and bias characteristics 
of simulated radiance and cloud features. The present study addresses this need by systematically evaluating a 
series of convection-allowing forecasts with different FV3 configurations in terms of their simulated radiances. 
The controlled experiments (EMC-LAMx, NSSL-LAM, and EMC-LAM) run on the same forecast cases during 
the 2020 NOAA HWT allow for the impacts of two different physics configurations and vertical resolution 
configurations to be isolated. An additional experiment (GSL-LAM) further allows for the quantification of 
the impact of simultaneous changes to the source of initial conditions, land surface model, and distribution of a 
similar number of vertical levels. The cloudy radiance verification in particular is emphasized through a variety 
of grid-point, neighborhood-based and object-based verification metrics.

We find that the NSSL-LAM, EMC-LAMx, and GSL-LAM configurations all underperform the EMC-LAM 
configuration by several metrics after the first few forecast hours. This difference in performance can be attrib-
uted to the physics configuration since the only difference between the EMC-LAM and EMC-LAMx is the micro-
physics, cumulus and PBL parameterization schemes. EMC-LAMx, as well as NSSL-LAM and GSL-LAM, uses 
the Thompson microphysics scheme which is likely largely responsible for the observed over-forecasting of deep 
and mid-level clouds in these FV3 forecasts. Although largely inactive, the presence of a cumulus parameteriza-
tion scheme in EMC-LAM may also contribute to reducing an over-convective bias of the FV3-model. In other 

Figure 9. Systematic bias as a function of symmetric brightness temperature.



Earth and Space Science

JOHNSON ET AL.

10.1029/2022EA002651

12 of 15

Figure 10. RMSE of simulated (a) channel 8, (b) channel 9, and (c) channel 10 radiances after removing the bias as a 
function of symmetric brightness temperature. Statistical significance is indicated as in Figure 4.

Figure 11. Difference between channel 10 and channel 8 brightness temperature as a function of the channel 8 brightness 
temperature (a) without and (b) with bias correction.
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words, there may be an advantage in retaining some limited cumulus parameterization at 3-km grid spacing in 
FV3-based forecasts. The over-forecasting of clouds in EMC-LAMx is also slightly improved in the NSSL-
LAM configuration, which can be attributed to increased vertical resolution in NSSL-LAM. Since the great-
est difference in model layer thicknesses between NSSL-LAM and EMC-LAM occur in mid-levels (Figure 1), 
we speculate that this impact of vertical resolution may be related to the impacts of mid-level vertical resolu-
tion on entrainment processes during deep convection. For most results in this study, the differences between 
EMC-LAMx and GSL-LAM were much smaller than the differences between EMC-LAMx and NSSL-LAM or 
EMC-LAM. This relative similarity further supports the conclusion that the microphysics and PBL physics, and 
to a lesser extent the vertical resolution, are two of the critical aspects of the FV3 configuration from the perspec-
tive of forecasting simulated infrared radiances.

It should be noted that the FV3-LAM has undergone significant additional development in dynamics, physics 
(including Thompson microphysics), and data assimilation since the 2020 HWT. While these developments have 
shown substantial improvements in terms of radar reflectivity and precipitation since 2020 HWT (not shown), 
the present study highlights the importance of evaluating the impact of such developments from multiple perspec-
tives, including the perspective of simulated satellite brightness temperatures.

For the purpose of data assimilation, the early lead times and the cloud vertical structure are of particular impor-
tance. While the NSSL-LAM, EMC-LAMx, and GSL-LAM, with MYNN PBL and Thompson microphysics, 
have too much cloud through most of the forecast, the EMC-LAM, with EDMF PBL, and GFDL microphysics 
with SAS cumulus parameterization, has particularly poor performance at early lead times. Before applying 
bias-correction, EMC-LAM also shows unrealistic vertical structure of clouds that could be potentially important 
for the assimilation of multiple water-vapor channels. Bias-correction reduces the error in the EMC-LAM cloud 
vertical structure, and reduces but does not eliminate the EMC-LAM advantage in terms of RMSE. In general, 
non-linear bias correction conditioned on symmetric brightness temperature reduces the RMSE of the simulated 
radiance forecasts by about a factor of 2 for all configurations considered.

Data Availability Statement
The FV3-LAM software (FV3-LAM,  2020) version 1.01 used to run the forecasts evaluated in this study is 
available at https://github.com/ufs-community/ufs-srweather-app/releases, thanks to the UFS community. The 
level 1b ABI radiance observations (GOES-R, 2020) are available at https://www.ncdc.noaa.gov/airs-web/search, 
thanks to NCEP. The CRTM version 2.3.0 (CRTM, 2019) is available at github.com/BenjaminTJohnson/CRTM_
REL-2.3.0, the GSI version 3.7 (GSI, 2020) is available at https://dtcenter.org/community-code/gridpoint-sta-
tistical-interpolation-gsi/download, and the UPP version 4.1.0 (UPP, 2019) is available at https://github.com/
NOAA-EMC/UPP/commit/3b42c2a4999283bce18f7a45bccf4610703ad556. The simulated radiance forecasts 
and associated metadata can be accessed at http://weather.ou.edu/∼map/datasets/johnsonetal2023.tar.
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